IPNC 2014
Program Book

XIXth International Pathogenic Neisseria Conference
12-17th October 2014
Asheville, North Carolina, USA
History of the International Pathogenic Neisseria Conferences

In the 1970s a series of conferences were held dealing with issues of meningococcal epidemiology and vaccination. Some of these conferences were held in Milano, St. Paul de Vence, and Marseille. The first official IPNC was held in San Francisco, California in 1978.

1st International Pathogenic Neisseria Conference
1978, San Francisco, California, USA.
Chair: G.F. Brooks

2nd International Pathogenic Neisseria Conference
Chairs: S. Normark and D. Danielsson

3rd International Pathogenic Neisseria Conference
1982, Montreal, Canada.
Chair: I.W. DeVoe

4th International Pathogenic Neisseria Conference
1984, Asilomar; California, USA.
Chair: G.K. Schoolnik

5th International Pathogenic Neisseria Conference
Chair: J.T. Poolman

6th International Pathogenic Neisseria Conference
1988, Pine Mountain, Georgia, USA.
Chair: S.A. Morse

7th International Pathogenic Neisseria Conference
1990, Berlin, Germany.
Chair: M. Achtman

8th International Pathogenic Neisseria Conference
1992, Cuernavaca, Mexico.
Chair: C.I. Conde-Glez

9th International Pathogenic Neisseria Conference
Chair: M.C.J. Maiden and I Feavers

10th International Pathogenic Neisseria Conference
1996, Baltimore, Maryland, USA.
Chair: C.E. Frasch

11th International Pathogenic Neisseria Conference
1998, Nice, France.
Chair: X. Nassif

12th International Pathogenic Neisseria Conference
2000, Galveston, Texas, USA.
Chairs: F. Sparling and P. Rice

13th International Pathogenic Neisseria Conference
2002, Oslo, Norway.
Chair: E. Wedege

14th International Pathogenic Neisseria Conference
2004, Milwaukee, Wisconsin, USA.
Co-Conveners: M.A. Apicella and H. Seifert

15th International Pathogenic Neisseria Conference
2006, Cairns, North Queensland, Australia.
Co-Conveners: J. Davies and M. Jennings

16th International Pathogenic Neisseria Conference
Co-Conveners: L. van Alphen, P. van der Lay and G. van den Dobbelsteen

17th International Pathogenic Neisseria Conference
2010, Banff, Canada.
Co-Conveners: Anthony Schryvers and Scott Gray-Owen

18th International Pathogenic Neisseria Conference
2012, Würzburg, Germany.
Co-conveners: Matthias Frosch, Ulrich Vogel and Thomas Rudel

We thank Kai Lawson for designing the 2014 IPNC Logo
Welcome to IPNC 2014 Asheville

Welcome to the XIXth International Pathogenic Neisseria Conference and to Asheville, North Carolina and the Blue Ridge Mountains. We hope you find this conference scientifically stimulating and the setting enjoyable. The goal of the 2014 IPNC is to provide a balanced forum of basic and translational research, highlight cutting edge research through plenary oral and poster presentations, and stimulate new areas of investigation through round table discussion groups. It is also our goal to create a dynamic and interactive setting that facilitates interactions between established and junior researchers and among investigators from throughout the world to ensure the future of this important field.

The pathogenic Neisseria continue to rank high on the list of medically important bacteria, and research on these organisms is imperative for their eventual control. Study of these pathogens has also led to many fascinating paradigms of pathogenesis and continues to unveil the intricacy of host/bacterial interactions and the evolution and biological processes of bacteria. The major topics of the IPNC 2014 are the molecular and cellular biology of host/pathogen interactions, structure/function relationships of surface molecules and their roles in pathogenesis, physiological and metabolic processes that facilitate pathogen adaptation to different host microenvironments and may be targeted therapeutically, the role of gene regulation and genetics in in-host survival and the emergence of new strains, and host defenses and immunological responses that can influence susceptibility, carriage, symptomology, and disease pathology. Also highlighted are the epidemiology of invasive meningococcal disease and mechanisms and spread of antibiotic resistance in N. gonorrhoeae. Both of these latter areas are related to pathogenesis research and benefit from the field of population genetics, which can help identify bacterial factors that contribute to virulence or transmission. Finally, the development of vaccines and novel anti-infectives is critical for both pathogens, and thus an important focus of the conference.

We thank the many individuals who have made this year’s conference possible, including the Scientific Board who met in Bethesda, Maryland in June, 2014 to review abstracts, select oral presentations and help develop the scientific program. We also thank the numerous individuals within the IPNC community who have agreed to serve as session moderators, round table facilitators, and poster judges. Finally, we thank the many sponsors who provided financial support.

Enjoy the conference!

Ann Jerse
Cynthia Nau Cornelissen
Joe Dillard
Co-Convenors, IPNC 2014 Asheville
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of IPNC</td>
<td>1</td>
</tr>
<tr>
<td>Welcome</td>
<td>2</td>
</tr>
<tr>
<td>Organizers, Committees and Sponsors</td>
<td>4-5</td>
</tr>
<tr>
<td>General Information and Hotel Map</td>
<td>6-8</td>
</tr>
<tr>
<td>Floor Plans</td>
<td>7</td>
</tr>
<tr>
<td>Conference Agenda</td>
<td>9</td>
</tr>
<tr>
<td>Poster Map</td>
<td>18</td>
</tr>
<tr>
<td>Poster List</td>
<td>19</td>
</tr>
</tbody>
</table>
2014 IPNC Convenors

Ann E. Jerse, Ph.D.
Uniformed Services University
Bethesda, Maryland, U.S.A.

Cynthia N. Cornelissen, Ph.D.
Virginia Commonwealth University
Richmond, Virginia, U.S.A.

Joe Dillard, Ph.D.
University of Wisconsin
Madison, Wisconsin, U.S.A.

Scientific Board

Alison Criss, Ph.D.
University of Virginia,
Charlottesville, Virginia, U.S.A.

Matthias Frosch, M.D.
University of Würzburg,
Würzburg, F.R.G.

Gary Jarvis, Ph.D.
San Francisco Veteran's Affairs Hospital
San Francisco, California, U.S.A.

Vladimir Pelicic, Ph.D.
Imperial College
London, U.K.

Christoph Tang, M.D.
University of Oxford
Oxford, U.K.

Round Table Facilitators

Antibiotic Resistance
William M. Shafer, Ph.D.
Emory University
Magnus Unemo, Ph.D.
Örebro University Hospital

Non-coding RNAs
Joe Dillard, Ph.D.
University of Wisconsin
Hank Seifert, Ph.D.
Northwestern University

New Concepts in Regulatory Control of Neisseria Physiology
Cynthia N. Cornelissen, Ph.D.
Virginia Commonwealth University
Alastair McEwan, Ph.D.
Griffith University

Polymicrobial Infections/Colonization
Scott Gray-Owen, Ph.D.
University of Toronto
Ann Jerse, Ph.D.
Uniformed Services University

Gonorrhea Vaccine Workshop
Organizer: Carolyn Deal, Ph.D.
STD Branch, NIAID, NIH
Session Moderators

Joe Dillard
Kate Seib
Ellen Aho
Charlene Kahler
Martin Maiden
Christoph Schoen
Margaret Bash
Matthias Frosch
Sanjay Ram
Peter Beernink
Vladimir Pelicic
Robert Nicholas
David Trees
Michael Apicella
Thomas Hiltke
Mike Jennings
Gary Jarvis
Scott Gray-Owen
P. Frederick Sparling
Peter Rice
Dominique Caugant
Ray Borrow
Xavier Nassif
Alison Criss

Poster Judges

Guillaume Dumenil
Christopher Davies
Lisa Lewis
Yaramah Zalucki
Sunita Gulati
Myron Christodoulides
Joseph Duncan
Paola Massari
Marcia Hobbs
Ellen Aho
Susu Zughai
Yih-Ling Tseng
Ian Feavers
Aleksandra Sikora
Jay Lucidarme
Daniel Golparian

Conference Sponsors

Bill and Melinda Gates Foundation
Crucell
Cubist Pharmaceuticals
Emory University
Melinta Therapeutics, Inc.
National Institutes of Health/National Institute of Allergy and Infectious Diseases
Pfizer
PTC Therapeutics
TherapyX, Inc.
2014 Igor Stojiljkovic Scholarship Recipients
Anne-Flore Imhaus, Ph.D.
PARCC - Paris Centre de Recherche Cardiovasculaire
Jessica Poole
Institute for Glycomics
Sozan Qarani
University of Nottingham/School of Life Science
Evgeny Semchenko, Ph.D.
Griffith University

Conference Management
Gina Carlton
Henry M. Jackson Foundation
Robyn Hulvey
Henry M. Jackson Foundation
Kimberly Boxley
Henry M. Jackson Foundation and Uniformed Services University

Finding Your Way
Plenary Sessions and Round Table Discussions
Crowne Ballroom

Poster Displays, Meals, Opening Reception, and Poster Receptions
Expo Center

Business Center Location and Hours
The hotel business center is located behind the front desk, is open 24 hours, and is complimentary to hotel guests.

Registration Location and Hours
Located in the Laurel Registration Area
Sunday, October 12, 2014 3:00 p.m. – 6:00 p.m.
Monday, October 13, 2014 7:00 a.m. – 5:00 p.m.
Tuesday, October 14, 2014 7:00 a.m. – 5:30 p.m.
Wednesday, October 15, 2014 7:00 a.m. – 12:00 p.m.
Thursday, October 16, 2014 7:30 a.m. – 5:30 p.m.
Friday, October 17, 2014 7:00 a.m. – 12:00 p.m.

Tour Desk Location and Hours
Located in the Laurel Registration Area
Sunday, October 12, 2014 3:00 p.m. – 6:00 p.m.
Monday, October 13, 2014 8:00 a.m. – 3:30 p.m.
Tuesday, October 14, 2014 8:00 a.m. – 3:45 p.m.
Wednesday, October 15, 2014 8:00 a.m. – 12:00 p.m.
Speaker Ready Room Location and Hours
Located in the Dogwood Room
Sunday, October 12, 2014 3:00 p.m. – 6:00 p.m.
Monday, October 13, 2014 7:00 a.m. – 5:00 p.m.
Tuesday, October 14, 2014 7:00 a.m. – 5:30 p.m.
Wednesday, October 15, 2014 7:00 a.m. – 12:00 p.m.
Thursday, October 16, 2014 7:30 a.m. – 5:30 p.m.
Friday, October 17, 2014 7:00 a.m. – 10:30 a.m.

Downtown Shuttle
A shuttle to downtown Asheville is available at $5.00 per person, round trip. (A taxi will cost approximately $8.00 each way.) The shuttle has 2–3 drop off and pick up areas in downtown Asheville and operates from 8:00 a.m. – 1:00 a.m.

On-site Restaurants
Pro’s Table Restaurant is open from 6:30 a.m. – 2:00 p.m. for breakfast and lunch; and 5:00 – 10:00 p.m. for dinner.

Mulligan’s Bar and Grille is open for dinner from 4:00 p.m. – 2:00 a.m.

A full food and beverage menu is available through room service from 6:30 a.m. until 10:00 p.m. daily.

Child Care Information
Please see the hotel front desk for a current list of child care providers.
Emergency Dialing
Always dial 911 first, then 0 from a house phone to call the front desk.

Emergency Information
Nearest Hospital
Mission Hospital
509 Biltmore Ave
Asheville, NC 28801
(828) 213-1111

Nearest Pharmacy
CVS
24 Westgate Pkwy
Asheville, NC 28806
(828) 253-2872
CONFERENCE AGENDA

SUNDAY, OCTOBER 12

5:00 WELCOME
Cynthia Nau Cornelissen, Ph.D., Virginia Commonwealth University

5:15 KEYNOTE ADDRESS
O1. “A mouse model for studying the genetic and immunologic mechanisms of Neisseria commensalism”
Magdalene So, Ph.D.
Director, Microbial Pathogenesis Program
Member, BIOS Institute
Professor, Department of Immunobiology
University of Arizona

6:00 – 8:00 OPENING RECEPTION

MONDAY, OCTOBER 13

7:00 BREAKFAST (Expo Center)
8:00 INTRODUCTORY REMARKS
Ann Jerse, Ph.D., Uniformed Services University

PLENARY SESSION I: PHYSIOLOGY AND METABOLISM

Moderators
Charlene Kahler, Ph.D., University of Western Australia, Kate Seib, Ph.D., Griffith University

8:20 O2 The dynamic ‘acetylome’ of Neisseria gonorrhoeae in biofilm formation
Bradford Gibson, Buck Institute for Research on Aging

8:40 O3 Localization and substrate specificity of lytic transglycosylases LtgA and LtgD contribute to high levels of peptidoglycan monomer production
Ryan Schaub, University of Wisconsin-Madison

9:00 O4 The two-component system NtrYX is a key regulator of respiratory gene expression in Neisseria gonorrhoeae
Alastair McEwan, University of Queensland

9:20 O5 A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria
Freda Jen, Griffith University

9:40 O6 Global analysis of HPr role in Neisseria meningitidis physiology and virulence and its implication during experimental infection in mice
Ana Antunes, Institut Pasteur

10:00 – 10:30 COFFEE BREAK
PLENARY SESSION II: SURFACE STRUCTURES

Moderators
Ellen Aho, Ph.D., Concordia University; Mumtaz Virji, Ph.D., University of Bristol

10:30 O7 nagZ triggers gonococcal biofilm disassembly
Dan Stein, University of Maryland

10:50 O8 The neisserial outer membrane protein SLAM is required for translocation of surface lipoproteins across the outer membrane of Neisseria
Trevor Moraes, University of Toronto

11:10 O9 Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation
Christof Hepp, University of Cologne

11:30 O10 Mechanobiology of a commensal Neisseria species
Nicholas Biais, CUNY Brooklyn College

11:50 LUNCH (Expo Center)

1:45 O11 Modulation of gonococcal type IV pilus expression and function
Hank Seifert, Northwestern University

2:05 O12 Structural and functional investigations of the DUS (DNA Uptake Sequence) receptors in the Neisseriaceae family
Jamie Berry, Imperial College London

2:25 O13 The number of Neisseria meningitidis type IV pili determines host cell interaction
Anne-Flore Imhaus, Paris Centre de Recherche Cardiovasculaire

2:45-3:15 COFFEE BREAK

PLENARY SESSION III: POPULATION GENETICS

Moderators
Martin Maiden, Ph.D., University of Oxford; Christoph Schoen, Ph.D., University of Würzburg

3:15 O14 Sexual transmission of meningococci may account for an outbreak of meningococcal disease among men who have sex with men
Heike Claus, University of Würzburg

3:35 O15 Genomic analysis of the evolution and global spread of hyperinvasive meningococcal lineage 5
Odile Harrison, University of Oxford

3:55 O16 The ST-11 clonal complex: Core genome MLST reveals a complex population structure
Jay Lucidarme, Public Health England

4:15 O17 Ancestral acquisition of the capsule locus in Neisseria meningitidis occurred multiple times
Charlene Kahler, University of Western Australia

4:35 O18 Length modulation of horizontal gene transfer in in-silico evolution explains Neisseria meningitidis population structure
Duccio Medini, Novartis Vaccine Research

5:00 – 8:00 DINNER (on your own)

POSTER SESSION I

8:00-10:00 EXPO CENTER
Physiology and Metabolism, Population Genetics, Surface Structures, Meningococcal Vaccines, Antibiotic Resistance, and Novel Anti-Infectives
TUESDAY, OCTOBER 14

7:00 BREAKFAST (Expo Center)

PLENARY SESSION IV: MENINGOCOCCAL VACCINES

Moderators
Margaret Bash, M.D., Center for Biologics and Evaluation, FDA; Matthias Frosch, M.D., University of Würzburg

8:00 O19 Epidemic meningococcal meningitis in Africa: Success using a Group A conjugate vaccine and a development update on a new pentavalent vaccine (A/C/Y/W/X)
F. Marc LaForce, Serum Institute of India

8:30 O20 Safety and immunogenicity of a meningococcal serogroup B outer membrane vesicle vaccine with constitutive expression of the iron receptor FetA: a phase I, open-label, dose escalation clinical trial in healthy adult volunteers
Christina Dold, University of Oxford

8:50 O21 Exploring the capsule biosynthesis machinery of Neisseria meningitidis A with regard to its suitability for in vitro vaccine production
Francesco Berti, Novartis Vaccines

9:10 O22 Use of a Novel Serogroup B Meningococcal Vaccine in Response to Two University Outbreaks in the US
Manisha Patel, US Centers for Disease Control and Prevention

9:30 – 10:00 COFFEE BREAK

PLENARY SESSION V: FACTOR H/FACTOR H-BINDING PROTEIN

Moderators
Sanjay Ram, M.D., University of Massachusetts; Peter Beernink, Ph.D., Children's Hospital Oakland Research Institute

10:00 O23 Factor H binding protein as a meningococcal vaccine candidate: Are we there yet?
Sanjay Ram, University of Massachusetts Medical School

10:20 O24 Identification of several bactericidal epitopes on factor H binding protein, a meningococcal vaccine component using deuterium-hydrogen exchange mass spectroscopy
Gary Zlotnick, Pfizer Vaccines Research

10:35 O25 Human complement FH impairs protective serum anti-FHbp antibody by skewing antibody repertoire and enhancing FH binding
Isabella Costa, Children's Hospital Oakland Research Institute

10:50 O26 Impact of reducing complement inhibitor binding on the immunogenicity of an outer membrane vesicle-based vaccine against serogroup B Neisseria meningitidis
Christine Rollier, University of Oxford

11:05 O27 Resistance of meningococci to anti-FHbp bactericidal activity can be mediated by functional binding of complement FH to PorB3 and overcome by non-bactericidal anti-NspA antibody
Dan Granoff, Children's Hospital Oakland Research Institute

11:20 O28 Molecular epidemiology and global expression profiling of Neisseria meningitidis factor H binding protein (fHbp) by quantitative mass spectrometry
Vega Masignani, Novartis Vaccines

11:35 O29 Native outer membrane vesicle vaccine with over-expressed factor H binding protein confers protection against meningococcal colonization in human CEACAM1 transgenic mice
Rolando Pajon, Children's Hospital Oakland Research Institute
PLENARY SESSION VI: ANTIBIOTIC RESISTANCE

Moderators
Robert Nicholas, Ph.D., University of North Carolina; David Trees, Ph.D., US Center for Disease Prevention and Control

1:45 O30 Antimicrobial resistance in Neisseria gonorrhoeae – crucial public health actions and research to retain gonorrhea treatable
Magnus Unemo, Örebro University Hospital

2:15 O31 Whole genome sequencing of Neisseria gonorrhoeae isolates with reduced cephalosporin susceptibility collected in Canada from 1989 to 2012
Amrita Bharat, Public Health Agency of Canada

2:35 O32 Structural analysis of penicillin-binding protein 2 from the cephalosporin-resistant N. gonorrhoeae strain H041 – molecular mechanism underlying treatment failures in the clinic
Christopher Davies, Medical University of South Carolina

2:55 O33 In vivo-selected compensatory mutations increase fitness of ceftriaxone-resistant Neisseria gonorrhoeae
Leah Vincent, Uniformed Services University

3:15-3:45 COFFEE BREAK

PLENARY SESSION VII: NOVEL ANTI-INFECTIVES

Moderators
Michael Apicella, M.D., University of Iowa; Thomas Hiltke, Ph.D., National Institutes of Health

3:45 O34 LpxC inhibitors as a novel class of antibiotics against Neisseria gonorrhoeae
Pei Zhou, Duke University Medical Center

4:05 O35 Utilizing sialic acid analogues to define the molecular basis of complement resistance mediated by sialylation of Neisseria gonorrhoeae lipooligosaccharide and to design novel therapeutics
Sanjay Ram, University of Massachusetts Medical School

4:25 O36 Characterization of a novel outer membrane protein, NGO1985, as a potential target for the development of pharmacological interventions against gonorrhea
Igor Wierzbicki, Oregon State University

4:45 O37 Novel factor H-Fc chimeric immunotherapeutic molecules against pathogenic Neisseria
Jutamas Shaughnessy, University of Massachusetts Medical School

5:05 O38 Development of novel 2-pyridones for the treatment of Neisseria gonorrhoeae infections
Melissa Dumble, PTC Therapeutics

5:30 DINNER (on your own)

ROUND TABLE DISCUSSIONS

8:00 p.m. – 10:00 p.m.

ANTIBIOTIC RESISTANCE AND SPREAD

Facilitators
William Shafer, Ph.D., Emory University; Magnus Unemo Ph.D., Örebro University Hospital

This roundtable discussion focuses on the current problem of antibiotic resistance expressed by increasing numbers of clinical isolates of Neisseria gonorrhoeae. Following introductory remarks by P.F. Sparling M.D. on the evolution and emergence of resistance, the roundtable session will have three sub-sessions with
invited speakers who will discuss current issues regarding the epidemiology and molecular mechanisms of resistance as well as contemporary diagnostic methods to detect resistant strains and resistance-encoding genes and the development of new drugs to combat resistance. Each sub-session will be followed by a group discussion. The roundtable will conclude with a wrap-up discussion period.

Evolution and emergence of resistance P. Frederick Sparling
Magnitude of the problem Peter Rice, Magnus Unemo
Mechanisms, diagnostics and alternative treatments Robert Nicholas, David Trees, Daniel Golparian, Kevin Karem
Opening the pipeline Thomas Hiltke, Erin Duffy, Clive Mason, Chris Murphy
Summary and the Future William M. Shafer, Magnus Unemo, P. Frederick Sparling

NONCODING RNAs
Facilitators
Joe Dillard, Ph.D., University of Wisconsin; Hank Seifert, Ph.D., Northwestern University
In this roundtable, investigators working in the area of non-coding RNAs in Neisseria will discuss the field in general, methods for identifying, validating, and investigating regulatory RNAs; and also provide perspectives on the significance and future possibilities of such research. Discussion with audience members will be highly encouraged.

Overview of non-coding RNAs in bacteria Hank Seifert
Methods for the discovery of non-coding RNAs Thomas Rudel
Validation and investigation of non-coding RNAs Yvonne Pannekoek
Research perspective on the future of non-coding RNAs in Neisseria Caroline Genco
Pharmaceutical perspective on the future of non-coding RNAs in Neisseria Isabel Delany

WEDNESDAY, OCTOBER 15
7:00 BREAKFAST (Expo Center)

PLENARY SESSION VIII: GENE REGULATION AND GENETICS
Moderators
Mike Jennings, Ph.D., Griffith University; Vladimir Pelicic, Ph.D., Imperial University London

8:00 O39 Connection between the twin sRNA regulon and the stringent response in Neisseria meningitidis Yvonne Pannekoek, Academic Medical Center, Amsterdam

8:20 O40 Regulation of the gonococcal type IV secretion system involves two transcriptional repressors, two proteases, and an RNA switch Joe Dillard, University of Wisconsin

8:40 O41 The ModD1 epigenetic methyltransferase and transcriptional regulator from pathogenic Neisseria meningitidis Aimee Tan, Griffith University

9:00 O42 Characterization of the complete gonococcal transcriptome during natural mucosal infection reveals expression of numerous gonococcal regulatory, phage, and hypothetical proteins Caroline Genco, Boston University

9:20 O43 Comparative genome sequencing reveals within-host evolution of Neisseria meningitidis during invasive disease Christoph Schoen, University of Würzburg
PLENARY SESSION IX: HOST DEFENSES AND IMMUNE RESPONSES (1)

Moderators
Gary Jarvis, Ph.D., San Francisco Veterans Affairs Medical Center; Scott Gray-Owen, Ph.D., University of Toronto

10:10 O44 Neisseria gonorrhoeae infection and female hormonal risk factors: menstruation and ovulation
Stephanie McLaughlin, Johns Hopkins University

10:30 O45 Neisseria gonorrhoeae-mediated immune suppression: mechanisms and consequences in coincident chlamydia infection
Joseph Duncan, University of North Carolina

10:50 O46 N. gonorrhoeae induces localization of the inhibitor of apoptosis protein cIAP2 to Exosomes
Kathleen Goodmon, Boston University

11:10 O47 An LD-Carboxypeptidase (LdcA) controls the release of NOD1 agonist peptidoglycan from Neisseria gonorrhoeae
Jonathan Lenz, University of Wisconsin

11:30 O48 Neisserial-derived heptose is a novel microbial-associated molecular pattern that elicits a TIFA-dependent innate immune response
Ryan Gaudet, University of Toronto

11:50 FREE AFTERNOON

POSTER SESSION II
7:00 – 9:30 EXPO CENTER
Host Defenses and Immune Responses, Gene Regulation and Genetics, Epidemiology, Molecular and Cellular Biology, and Gonococcal Vaccines

THURSDAY, OCTOBER 16
7:30 BREAKFAST (Expo Center)

GONORRHEA VACCINE WORKSHOP
8:30-10:00
Moderator
Carolyn Deal, Ph.D., Sexually Transmitted Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, U.S.A.

This workshop will focus on gaps, challenges, and potential for development of a vaccine to prevent gonorrhea. Last year the World Health Organization and the National Institute of Allergy and Infectious Diseases convened a technical consultation on development of vaccines for STIs. This meeting focused on five STIs: herpes simplex virus, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum infections. Gaps in knowledge and challenges to development were outlined in the broad areas of epidemiology, basic and translational research, clinical development, and targeted vaccine indication. Specific details vary for each vaccine, but key themes emerged as a roadmap. Carolyn Deal will
discuss the Roadmap and how STIs may fit into the overall goals of the Decade of Vaccines and the Global Vaccine Action Plan. This will be followed by three talks discussing the practical and regulatory challenges of vaccine development, what industry needs to know to advance a product towards clinical trials, and some of the data that FDA considers in the regulation of bacterial vaccines.

The way forward: A global roadmap for progress toward STI vaccine development and introduction
Carolyn Deal, Ph.D. STD Branch, DMID, NIAID, NIH
Vaccine product development - overview of the practical and regulatory challenges
Steven L Giarding, Ph.D. Senior Life Scientist, Leidos
Factors industry considers in moving a product towards clinical trials
Gary Zlotnick, Ph.D., Pfizer, Inc.
FDA regulation of bacterial vaccines
Scott Stibitz, Ph.D., Center for Biologics Evaluation and Research, US FDA

10:00-10:30 COFFEE BREAK

PLENARY SESSION X: GONOCOCCAL VACCINES

Moderators
P. Frederick Sparling, M.D., University of North Carolina; Peter Rice, M.D., University of Massachusetts

10:30 O49 Modeling the potential impact of gonococcal vaccines
Kate Seib, Griffith University

10:50 O50 Proteomics-drive reverse vaccinology for gonorrhea
Aleksandra Sikora, Oregon State University

11:10 O51 Development of MtrE, the outer membrane channel of the MtrCDE and FarAB,MtrE active efflux pump systems as a gonorrhea vaccine
Amanda DeRocco, Uniformed Services University

11:30 O52 Neisseria gonorrhoeae methionine receptor GNA1946 confers protection from host-mediated killing
Evgeny Semchenko, Griffith University

11:50 – 1:30 LUNCH (Expo Center)

PLENARY SESSION XI: HOST DEFENSES AND IMMUNE RESPONSES (2)

Moderators
Michael Russell, Ph.D., University of Buffalo, Wenxia Song, Ph.D., University of Maryland

1:30 O53 Inflammatory microRNAs induced by neisserial OMPs support adjuvant activity
Lee Wetzler, Boston University Medical School

1:50 O54 Global analysis of neutrophil responses to Neisseria gonorrhoeae reveals a self-propagating inflammatory program
Anna Sintsova, University of Toronto

2:10 O55 Insights into Neisseria meningitidis infection and immunity from the CEACAM-humanized mouse model
Carolyn Buckwalter, University of Toronto

2:30 O56 Recruitment of CD46 to the cortical plaque serves to confer resistance to serum killing on Neisseria gonorrhoeae
Nathan Weyand, University of Arizona

2:50 O57 Resistance to serum and antibody-mediated bacteriolysis dependent on neisserial immunoglobulin-binding protein TspB
Gregory Moe, Children’s Hospital Oakland Research Institute
3:10-3:30 COFFEE BREAK

ROUND TABLE DISCUSSIONS
3:30-5:30

NEW CONCEPTS IN REGULATORY CONTROL OF NEISSERIAL PHYSIOLOGY
Facilitators
Cynthia N. Cornelissen, Ph.D., Virginia Commonwealth University, Alastair McEwan, Ph.D., Griffith University
This round table session will focus on new regulators and regulatory pathways that influence physiology and metabolism in the pathogenic Neisseria species. Two component regulatory systems, efflux regulators, small RNAs and repeat motifs will be discussed in the context of their influence on piliation, nutrient acquisition, and general metabolism.

A two-component system regulates pilE transcription in Neisseria elongata María A. Rendón
Regulation of Neisseria gonorrhoeae misSR two component system John Kirby
GadhR belongs to the gonococcal MtrR regulon and is a transcriptional activator of the genes encoding GdhA glutamate dehydrogenase and GltT glutamine symporter Corinne Rouquette-Loughlin
MtrA is a global regulator of genes in N. gonorrhoeae with roles in iron acquisition and glutamate metabolism Yaramah Zalucki, Ph.D.
Multi-tasking by transcriptional regulators of the Mtr efflux system integrates antimicrobial resistance, pathogenesis and metabolism of Neisseria gonorrhoeae William Shafer, Ph.D.
Quantitation of proteins regulated by the RNA chaperone protein Hfq of Neisseria meningitidis using LC-MSE Robert Huis in’t Veld, M.D.
Identification and characterization of novel pil RNAs and promoters of Neisseria gonorrhoeae Stuart Hill, Ph.D.
The Correia enclosed repeat element: How it is affected by temperature, pH, CO2, and non-coding RNAs in the Neisseria spp. Sabrina Roberts, Ph.D.

POLYMICROBIAL INFECTIONS/colonization
Facilitators
Scott Gray-Owen, Ph.D., University of Toronto, Ann Jerse, Ph.D., Uniformed Services University
Polymicrobial research is a rich, but relatively untapped area of Neisseria research. However, significant advances in this field are now attainable through microbiome technology, animal and tissue culture co-infection models, and a wealth of detailed information on adaptation mechanisms used by the pathogenic Neisseria in the absence of other microbes. This round table will build a case for increased focus on polymicrobial research, discuss current knowledge in this area, and identify areas of research need.

Overview: Microbiomes of the respiratory and genital tracts Anthony Schryvers
Overview: Co-infections with N. gonorrhoeae and other sexually transmitted microbes Peter Rice
Gonorrhea-HIV co-infections Scott Gray-Owen
Gonorrhea-chlamydial co-infections Joseph Duncan
Impact of vaginal lactobacilli on Neisseria gonorrhoeae Ann Jerse
Interactions between Neisseria elongata and Neisseria gonorrhoeae Magdalene So
Overview: Meningococcal co-infections with respiratory pathogens Xavier Nassif
Impact of Neisseria lactamica on Neisseria meningitidis Andrew Gorringe, Ph.D.

CONFERENCE BANQUET - Ticket Required
7:30 p.m. The Venue
21 North Market Street, Asheville
Transportation to the banquet will begin at 6:30 p.m. (specifics to be announced)
FRIDAY, OCTOBER 17

7:00 BREAKFAST (Expo Center)

PLENARY SESSION XII: EPIDEMIOLOGY

Moderators
Dominique Caugant, Ph.D., Norwegian Institute of Public Health, Ray Borrow, Ph.D., Public Health England

8:00 O58 Molecular epidemiology of serogroup A meningococcus in South Africa, 2003-2012
Mignon du Plessis, National Health Laboratory Service, Johannesburg

8:15 O59 Capsular switching and global spread of Neisseria meningitidis serogroup W ST-11
Mustapha Mustapha, University of Pittsburg

8:30 O60 New hypervirulent clones of Neisseria meningitidis evade herd immunity through homologous replacement of loci for cell surface protein antigens and protein glycosylation
Araceli Lamelas Cabello, Swiss Tropical and Public Health Institute

8:45 O61 Relationship between carriage of Neisseria meningitidis and meningococcal disease in Burkina Faso, 2009-2012
Lucy McNamara, US Centers for Disease Control and Prevention

9:00 O62 Association of meningococcal type with disease outcome
Johannes Elias, University of Würzburg

PLENARY SESSION XIII: MOLECULAR AND CELLULAR BIOLOGY

Moderators
Xavier Nassif, M.D., INSERM, France, Alison Criss, Ph.D., University of Virginia

9:15 O63 MDAΦ, the invasive filamentous bacteriophage of Neisseria meningitidis, increases bacterial colonization onto epithelial cells by mediating bacteria-bacteria interaction
Emmanuelle Bille, INSERM, France

9:35 O64 Neisserial phage protein contributes to neisserial pathogenesis
Wenxia Song, University of Maryland

9:55 O65 Gonococcal restriction endonucleases cause double-strand breaks and distort mitosis in epithelial cells
Helena Aro, Stockholm University

10:15 – 10:35 COFFEE BREAK

10:35 O66 Gonococcal association with human CEACAMs during infection of the female genital tract
Epshita Islam, University of Toronto

10:55 O67 Neisseria meningitidis differentially activates the acid sphingomyelinase-ceramide system to induce its uptake into brain endothelial cells
Alexandra Schubert-Unkmeir, University of Würzburg

MEETING CLOSING
11:15 Roundtable reports
12:00 Conference Farewell
12:05 Announcement of 2016 IPNC
ANTIBIOTIC RESISTANCE

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1. A preliminary molecular assay for detection of antimicrobial resistant Neisseria gonorrhoeae</td>
<td>Amrita Bharat</td>
</tr>
<tr>
<td>2</td>
<td>P2. Distribution of antibiotic resistance genes in a global Neisseria genome collection</td>
<td>Carina Brehony</td>
</tr>
<tr>
<td>3</td>
<td>P3. Fluoroquinolone resistance-conferring gyrA91/95 mutations provide enhanced in vivo fitness to Neisseria gonorrhoeae strain MS11 by increasing resistance to cationic antimicrobial peptides</td>
<td>Jonathan D'Ambrozio</td>
</tr>
<tr>
<td>4</td>
<td>P4. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of N. gonorrhoeae</td>
<td>Christopher Davies</td>
</tr>
<tr>
<td>5</td>
<td>P5. Genomics of antibiotic resistance emergence within Nesseria gonorrhoeae</td>
<td>Matthew Ezewudo</td>
</tr>
<tr>
<td>6</td>
<td>P6. Establishment of a Neisseria gonorrhoeae reference lab & repository for understanding the spread of antimicrobial resistant gonorrhea in the U.S. military</td>
<td>Michelle Pilligua-Lucas</td>
</tr>
<tr>
<td>7</td>
<td>P7. Antimicrobial susceptibilities of Neisseria gonorrhoeae in Nanjing, China, 2013</td>
<td>Xiaohong Su</td>
</tr>
<tr>
<td>8</td>
<td>P8. In vitro activity of the novel DNA gyrase inhibitor AZD0914 against 187 clinical Neisseria gonorrhoeae isolates with multi-resistance to other antimicrobials</td>
<td>Xiaohong Su</td>
</tr>
<tr>
<td>9</td>
<td>P9. Population genomic analysis identifies a strong association of the gonococcal genetic island with third generation cephalosporin resistance in gonococci</td>
<td>Odile Harrison</td>
</tr>
<tr>
<td>10</td>
<td>P10. Recent increase in reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae after a decrease of the frequency of the presence of the mosaic penA gene</td>
<td>Alje Van Dam</td>
</tr>
</tbody>
</table>

MENINGOCOCCAL VACCINES

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>P11. Meningococcal serogroup A, C, Y and W serum bactericidal antibody profiles in Hajj pilgrims</td>
<td>Xilian Bai</td>
</tr>
<tr>
<td>12</td>
<td>P12. Effect of the Eculizumab (Soliris (R)), on the meningococcal serogroup B (MenB) serum bactericidal antibody (SBA) assay</td>
<td>Xilian Bai</td>
</tr>
<tr>
<td>13</td>
<td>P13. Comparison of different serogroup A immunoassays following a single dose of either MenAfriVac or quadrivalent polysaccharide vaccine in healthy Africans 2- to 29- years of age</td>
<td>Margaret Bash</td>
</tr>
<tr>
<td>14</td>
<td>P14. Simultaneous quantitation of PorA and PorB in outer membrane vesicles of Bexsero vaccine using isotope dilution mass spectrometry</td>
<td>Nicola Beresford</td>
</tr>
<tr>
<td>15</td>
<td>P15. The Global Meningococcal Initiative, report from the second summit meeting, Cape Town, South Africa</td>
<td>Ray Borrow</td>
</tr>
<tr>
<td>16</td>
<td>P16. Structural insights reveal a novel trimeric autotransporter adhesin fold in the meningococcal vaccine antigen NadA and the mechanism of its ligand-dependent transcriptional regulation by NadR</td>
<td>Matthew Bottomley</td>
</tr>
<tr>
<td>P17. Sequence, structural and functional differences between different isotypes of transferrin binding proteins A and B from Neisseria meningitidis</td>
<td>Somshukla Chaudhuri</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>P18. Development and characterization of a low cost synthetic oligomer based meningococcal serogroup C conjugate vaccine</td>
<td>Manoj Kumar Chhikara</td>
<td></td>
</tr>
<tr>
<td>P19. Variation in factor H-binding protein distribution among culture and non-culture meningococcal disease cases in England and Wales in 2011</td>
<td>Stephen Clark</td>
<td></td>
</tr>
<tr>
<td>P20. Structural characterization of endotoxin from Neisseria meningitidis B and subsequent evaluation of its pro-inflammatory activity</td>
<td>Marilza Correa</td>
<td></td>
</tr>
<tr>
<td>P21. A recombinant protein truncation strategy induces bactericidal antibodies to the Macrophage Infectivity Potentiator protein of Neisseria meningitidis and circumvents potential cross-reactivity with human FKBP proteins.</td>
<td>Myron Christodoulides</td>
<td></td>
</tr>
<tr>
<td>P22. The Neisseria meningitidis amino acid ABC transporter substrate-binding protein, NMB1612, induces functional cross-protective bactericidal antibodies</td>
<td>Myron Christodoulides</td>
<td></td>
</tr>
<tr>
<td>P23. The biology and function of Adhesin Complex Proteins of pathogenic Neisseria</td>
<td>Myron Christodoulides</td>
<td></td>
</tr>
<tr>
<td>P24. Pre-clinical evaluation of the vaccine potential of the highly conserved, expressed and surface-exposed Cell Binding Factor (CBF, NMB0345) protein of Neisseria meningitidis</td>
<td>Myron Christodoulides</td>
<td></td>
</tr>
<tr>
<td>P26. Potential impact of vaccination of college-age adolescents against N. meningitidis serogroup B: Results of a transmission dynamic model</td>
<td>Raymond Farkouh</td>
<td></td>
</tr>
<tr>
<td>P27. Are transferrin receptor-mediated iron acquisition systems primarily limited to pathogenic bacteria that inhabit the upper respiratory tract?</td>
<td>Vahid Farshchi Andisi</td>
<td></td>
</tr>
<tr>
<td>P28. Antigen engineering of transferrin binding protein B as a vaccine antigen against infection by Neisseria meningitidis</td>
<td>Jamie Fegan</td>
<td></td>
</tr>
<tr>
<td>P29. Interchangeability of meningococcal group C conjugate vaccines with different carrier proteins in the United Kingdom infant immunisation schedule</td>
<td>Helen Findlow</td>
<td></td>
</tr>
<tr>
<td>P30. Potential coverage of the BEXSERO® MenB vaccine on non-B meningococci</td>
<td>Brunella Brunelli</td>
<td></td>
</tr>
<tr>
<td>P31. Expression of Neisseria meningitidis antigens of the 4CMenB vaccine; comparison between MATS and FACS for prediction of hSBA</td>
<td>Johan Holst</td>
<td></td>
</tr>
<tr>
<td>P32. Immunogenicity and safety of a single dose of CRM-conjugated (Novartis) or TT-conjugated (GSK) meningococcal quadrivalent vaccine in adolescents who were primed with Meningitec™, Menjugate™ or NeisVac-C™ at preschool age</td>
<td>David Ishola</td>
<td></td>
</tr>
<tr>
<td>P33. Bivalent rLP2086 elicits antibodies in individuals that provide broad coverage against MnB strains expressing prevalent and outbreak-associated fHBP variants</td>
<td>Thomas Jones</td>
<td></td>
</tr>
<tr>
<td>P34. A prototype GMMA based vaccine against meningococcal meningitis caused by multiple serogroups in sub-Saharan Africa</td>
<td>Oliver Koeberling</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>35</td>
<td>P35. Characterization of the human antibody repertoire to type B meningococcus vaccine</td>
<td>Vega Masignani</td>
</tr>
<tr>
<td>36</td>
<td>P36. Using monoclonal antibodies to understand the molecular basis for the cross bactericidal activity of NHBA antigen</td>
<td>Marzia Giuliani</td>
</tr>
<tr>
<td>37</td>
<td>P37. Expediting development of and access to new vaccines</td>
<td>Lucia Lee</td>
</tr>
<tr>
<td>38</td>
<td>P38. Variation in PorB sequence promotes generation of non-PorB-specific bactericidal antibody</td>
<td>Kathryn Matthias</td>
</tr>
<tr>
<td>39</td>
<td>P39. Examination of the role of dendritic cells, macrophages and B cells in the function of vaccine adjuvants, including meningococcal PorB</td>
<td>Lee Wetzler</td>
</tr>
<tr>
<td>40</td>
<td>P40. Examination of the role of meningococcal PorB adjuvant in the induction of vaccine induced immune responses using a system biology approach.</td>
<td>Lee Wetzler</td>
</tr>
<tr>
<td>41</td>
<td>P41. Pooled hSBA titers predict seroresponse rates of infants vaccinated with 4CMenB</td>
<td>Duccio Medini</td>
</tr>
<tr>
<td>42</td>
<td>P42. Antibody responses in humans after vaccination with a novel serogroup A and W outer membrane vesicle (OMV) vaccine targeted for the African meningitis belt – Results from a phase I study in Cuba</td>
<td>Lisbeth Naess</td>
</tr>
<tr>
<td>43</td>
<td>P43. An OMV vaccine derived from a capsular group B meningococcus with constitutive FetA expression: preclinical evaluation of immunogenicity and toxicity</td>
<td>Gunnstein Norheim</td>
</tr>
<tr>
<td>44</td>
<td>P44. Elimination of meningococcal A epidemics in Africa is within reach.</td>
<td>Abraham Hodgson</td>
</tr>
<tr>
<td>45</td>
<td>P45. Vaccine development using genetic fusions of surface-exposed loops from Neisseria meningitidis PorB and TbpA conjugated to the cholera toxin B subunit</td>
<td>Gregory Price</td>
</tr>
<tr>
<td>46</td>
<td>P46. Safety and immunogenicity of a serogroup A and W meningococcal outer membrane vesicle vaccine: Results from a Phase I clinical study in Cuban volunteers</td>
<td>Luis Garcia</td>
</tr>
<tr>
<td>47</td>
<td>P47. Epidemic meningococcal meningitis in Africa: Success using a Group A conjugate vaccine and a development update on a new pentavalent vaccine (A/C/Y/W/X)</td>
<td>Marc LaForce</td>
</tr>
<tr>
<td>48</td>
<td>P48. Immune response against proteoliposomes incorporating the recombinant meningococcal macrophage infectivity potentiator protein (rMIP)</td>
<td>Sandra Sanchez</td>
</tr>
<tr>
<td>49</td>
<td>P49. Meningococcal antigen typing system (MATS) based coverage for Bexsero on invasive MenB strains isolated from infants aged less than one year in Germany 2007-2013</td>
<td>Heike Claus</td>
</tr>
<tr>
<td>50</td>
<td>P50. Engineering antigens derived from transferrin receptors – importance of surrogate host-pathogen systems and an integrated vaccine design and evaluation pipeline</td>
<td>Anthony Schryvers</td>
</tr>
<tr>
<td>51</td>
<td>P51. Duration of immunity and immunological memory induced by a Brazilian meningococcal C conjugate vaccine</td>
<td>Reinaldo Martins</td>
</tr>
<tr>
<td>52</td>
<td>P52. Decline of protective antibodies after serogroup C meningococcal conjugate vaccine in patients with sickle cell disease</td>
<td>Alessandra Souza</td>
</tr>
<tr>
<td>53</td>
<td>P53. Timing of adolescent booster after single primary MenCC immunization at young age and the role of saliva in evaluating the effect of vaccination.</td>
<td>Susanne Stoof</td>
</tr>
<tr>
<td>54</td>
<td>P54. Predicting serum bactericidal activity with a high-throughput flow-cytometric complement deposition assay using an expanded serum panel</td>
<td>Stephen Taylor</td>
</tr>
<tr>
<td>55</td>
<td>P55. Randomized controlled trial comparing the immunogenicity of 3- and 4-dose schedules of a meningococcal MenACWY conjugate vaccine in healthy infants</td>
<td>Igor Smolenov</td>
</tr>
<tr>
<td>56</td>
<td>P56. Identification of an optimal formulation of MenABCWY vaccine in adolescents using desirability analysis</td>
<td>Igor Smolenov</td>
</tr>
<tr>
<td>57</td>
<td>P57. Evaluation of meningococcal C conjugate vaccine programs in Canadian children</td>
<td>Julie Bettinger</td>
</tr>
</tbody>
</table>

NOVEL ANTI-INFECTIVES

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>P58. Fibroblast Growth Factor1 is required for optimal meningococcal invasion into Human Brain Microvascular Endothelial cells</td>
<td>Karl Wooldridge</td>
</tr>
<tr>
<td>59</td>
<td>P59. Establishment of the gonorrhea mouse model for pre-clinical testing of antimicrobial agents against gonorrhea</td>
<td>Kristie Connolly</td>
</tr>
<tr>
<td>60</td>
<td>P60. Development of a broth microdilution assay for determination of in vitro susceptibility of Neisseria gonorrhoeae</td>
<td>Nicole Cotroneo</td>
</tr>
<tr>
<td>61</td>
<td>P61. In vitro activities of the novel bicyclolides modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against multidrug resistant clinical Neisseria gonorrhoeae isolates and international reference strains</td>
<td>Daniel Golparian</td>
</tr>
<tr>
<td>62</td>
<td>P62. High in vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea</td>
<td>Susanne Jacobsson</td>
</tr>
<tr>
<td>63</td>
<td>P63. The neisserial LOS phosphoethanolamine transferase: crystal structure, catalytic function and progress on drug design</td>
<td>Charlene Kahler</td>
</tr>
<tr>
<td>64</td>
<td>P64. Identification of putative drug targets and functional annotation of hypothetical proteins of Neisseria gonorrhoeae using bioinformatics tools</td>
<td>Ravi Kant</td>
</tr>
<tr>
<td>65</td>
<td>P65. Novel antimicrobial agents against Neisseria gonorrhoeae from extracts of natural products.</td>
<td>Lori Snyder</td>
</tr>
</tbody>
</table>

PHYSIOLOGY AND METABOLISM

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>P66. Carbohydrate transport and metabolism in Neisseria meningitidis</td>
<td>Ana Antunes</td>
</tr>
<tr>
<td>67</td>
<td>P67. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity</td>
<td>Francis Biville</td>
</tr>
<tr>
<td>68</td>
<td>P68. Differences in AmpG sequence increase pro-inflammatory peptidoglycan fragment release in Neisseria gonorrhoeae compared to Neisseria meningitidis</td>
<td>Jia Mun Chan</td>
</tr>
<tr>
<td>69</td>
<td>P69. Common cell shape evolution of nasopharyngeal pathogens</td>
<td>Frédéric Veyrier</td>
</tr>
</tbody>
</table>
POPULATION GENETICS

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>P70. Generation of a finished Swedish serogroup Y genome belonging to the ST-23 clonal complex</td>
<td>Odile Harrison</td>
</tr>
<tr>
<td>71</td>
<td>P71. Persistent meningococcal carriage is associated with low levels of genetic variation</td>
<td>Christopher Bayliss</td>
</tr>
<tr>
<td>72</td>
<td>P72. Comparative analysis of Canadian Neisseria meningitidis serogroup B isolates</td>
<td>Julie Bettinger</td>
</tr>
<tr>
<td>73</td>
<td>P73. Whole genome comparison of Neisseria meningitidis isolates from patients and their close family contacts using gene-by-gene analysis</td>
<td>Holly Bratcher</td>
</tr>
<tr>
<td>74</td>
<td>P74. From genes to genomes: current status of the Neisseria reference libraries hosted on PubMLST.org</td>
<td>Keith Jolley</td>
</tr>
<tr>
<td>75</td>
<td>P75. A new Neisseria species?</td>
<td>Paul Kristiansen</td>
</tr>
<tr>
<td>76</td>
<td>P76. A genetic characterization of the 4CMenB vaccine antigen genes in serogroup B isolates from invasive meningococcal disease (IMD) cases in the four Western Canadian Provinces of British Columbia, Alberta, Saskatchewan and Manitoba from 2009 to 2013</td>
<td>Dennis K.S. Law</td>
</tr>
<tr>
<td>77</td>
<td>P77. Genetic analysis and quantitation of factor H binding protein expression in US invasive meningococcal serogroup B isolates from population-based active bacterial core surveillance (2010-2012)</td>
<td>Paul Liberator</td>
</tr>
<tr>
<td>78</td>
<td>P78. Exploring the evolution of three pandemic waves of serogroup A meningococci using whole-genome analysis and mathematical modelling: how important is immune escape?</td>
<td>Eleanor Watkins</td>
</tr>
</tbody>
</table>

SURFACE STRUCTURES

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>P79. Structural insight into the translocation mechanism of the zinc-uptake receptor ZnuD, a vaccine candidate against Neisseria meningitidis</td>
<td>Charles Calmettes</td>
</tr>
<tr>
<td>80</td>
<td>P80. Temperature reduction stimulates proteomic changes enhancing meningococcal biofilm formation</td>
<td>Heike Claus</td>
</tr>
<tr>
<td>81</td>
<td>P81. Contribution of the TbpA loop 3 helix to transferrin-iron acquisition by Neisseria gonorrhoeae</td>
<td>Devin Cash</td>
</tr>
<tr>
<td>82</td>
<td>P82. Binding of the RmpM to porin complexes depends on a six amino acid peptide of its N-terminal domain</td>
<td>Paula Freixeiro</td>
</tr>
<tr>
<td>83</td>
<td>P83. Structural characterisation of HpuA</td>
<td>Stephen Freixeiro</td>
</tr>
<tr>
<td>84</td>
<td>P84. SLAM2: an outer membrane transporter required for the display of surface lipoprotein HpuA</td>
<td>Yogesh Hooda</td>
</tr>
<tr>
<td>85</td>
<td>P85. The role of gonococcal TonB-dependent Transporters, TdfH and TdfJ in heme and zinc acquisition</td>
<td>Sophonie Jean</td>
</tr>
<tr>
<td>86</td>
<td>P86. Applications of high-resolution MALDI-TOF mass spectrometry to analysis of intact lipooligosaccharides (LOS) from Neisseria meningitidis</td>
<td>Constance John</td>
</tr>
<tr>
<td>87</td>
<td>P87. Biochemical and biophysical analysis of the interactions between lactoferrin-binding protein B and lactoferrin</td>
<td>Sarathy Karunan Partha</td>
</tr>
<tr>
<td>88</td>
<td>P88. Neisserial Opa protein interactions with human receptors in vitro and in vivo</td>
<td>Jennifer Martin</td>
</tr>
<tr>
<td>89</td>
<td>P89. Analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.</td>
<td>Paola Massari</td>
</tr>
<tr>
<td>90</td>
<td>P90. Glycan binding by Neisseria meningitidis and the meningococcal serogroup B vaccine antigen NHBA</td>
<td>Tsitsi Mubaiwa</td>
</tr>
<tr>
<td>91</td>
<td>P91. Compensatory mutations in Neisseria meningitidis Factor H binding protein: Implications for immune escape and evolution</td>
<td>Rolando Pajon</td>
</tr>
<tr>
<td>92</td>
<td>P92. Investigating host specificity in the bacterial transferrin receptors</td>
<td>Anastassia Pogoutse</td>
</tr>
<tr>
<td>93</td>
<td>P93. Neisseria gonorrhoeae and complement receptor 3: Probing the lectin functions of the I-domain of CD11b</td>
<td>Jessica Poole</td>
</tr>
</tbody>
</table>

POSTER SESSION II
Wednesday, October 15, 7:00 – 9:30 p.m.

EPIDEMIOLOGY

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P94. Meningococcal disease among men who have sex with men –United States, 2012-2013</td>
<td>Amy Blain</td>
</tr>
<tr>
<td>2</td>
<td>P95. Understanding factors affecting University of California Santa Barbara students’ decision to get vaccinated with Bexsero™, an unlicensed meningitis B vaccine: A survey on students’ knowledge, attitudes and practices</td>
<td>Lucy Breakwell</td>
</tr>
<tr>
<td>3</td>
<td>P96. Whole genome sequence analysis of a representative collection of disease-associated isolates from the Republic of Ireland, epidemiological years 2010-11 to 2012-13.</td>
<td>Carina Brehony</td>
</tr>
<tr>
<td>4</td>
<td>P97. Invasive bacterial disease in Croatia and the role of Neisseria meningitidis</td>
<td>Suzana Bukovski</td>
</tr>
<tr>
<td>5</td>
<td>P98. National surveillance of serogroups and antimicrobial resistance of Neisseria meningitidis (Nme) isolates causing invasive disease in Argentina: Period 2006-2013</td>
<td>Adriana Efron</td>
</tr>
<tr>
<td>6</td>
<td>P99. Asymptomatic carriage of Neisseria meningitidis (Nm) among 18-21 year old students attending the “Universidad Nacional de la Plata” (UNLP)-Buenos Aires- Argentina between September 2012 and March 2013</td>
<td>Adriana Efron</td>
</tr>
<tr>
<td>7</td>
<td>P100. Epidemiology and surveillance of meningococcal disease in England and Wales.</td>
<td>Steve Gray</td>
</tr>
<tr>
<td>8</td>
<td>P101. Re-emergence of a Neisseria meningitidis serogroup A ST2859 clone in Northern Ghana after transient replacement by serogroup W ST2881 meningococci</td>
<td>Julia Hauser</td>
</tr>
<tr>
<td>9</td>
<td>P102. Retrospective characterization of meningococcal serogroup B and C outbreak strains in</td>
<td>Melissa Whaley</td>
</tr>
<tr>
<td>10</td>
<td>P103. Factors affecting vaccine uptake during mass-vaccination with the serogroup A meningococcal conjugate vaccine, MenAfriVac in Burkina Faso</td>
<td>Paul Kristiansen</td>
</tr>
<tr>
<td>11</td>
<td>P104. Transmissibility of recent isolates of Neisseria gonorrhoeae from Nanjing, PRC</td>
<td>Lisa Lewis</td>
</tr>
<tr>
<td>Board #</td>
<td>Abstract Number and Title</td>
<td>Presenter</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>18</td>
<td>P111. Regulation of the Neisseria gonorrhoeae misSR two component system</td>
<td>John Kirby</td>
</tr>
<tr>
<td>19</td>
<td>P112. DprA is required for natural transformation, limits phase and pilin antigenic variation, and is dispensable for DNA repair in Neisseria gonorrhoeae</td>
<td>Paul Duffin</td>
</tr>
<tr>
<td>20</td>
<td>P113. Quantitation of proteins regulated by the RNA chaperone protein Hfq of Neisseria meningitidis using LC-MSE</td>
<td>Robert Huis in ’t Veld</td>
</tr>
<tr>
<td>21</td>
<td>P114. Identification and characterization of novel pil RNAs and promoters of Neisseria gonorrhoeae</td>
<td>Stuart Hill</td>
</tr>
<tr>
<td>22</td>
<td>P115. Characterization of pilE gene regulation in Neisseria gonorrhoeae</td>
<td>Stuart Hill</td>
</tr>
<tr>
<td>23</td>
<td>P116. Translational regulation of the respiratory electron transport chain of Neisseria meningitidis by the Fur controlled small non-coding RNA NrrF.</td>
<td>Yvonne Pannekoek</td>
</tr>
<tr>
<td>24</td>
<td>P117. A two-component system regulates pilE transcription in Neisseria elongata</td>
<td>Maria Rendón</td>
</tr>
<tr>
<td>25</td>
<td>P118. GdhR belongs to the gonococcal MtrR regulon and is a transcriptional activator of the genes encoding GdhA glutamate dehydrogenase and GltT glutamate symporter.</td>
<td>Corinne Rouquette-Loughlin</td>
</tr>
<tr>
<td>26</td>
<td>P119. The Correia Enclosed Repeat Element: How it is affected by temperature, pH, CO2, and non- coding RNAs in the Neisseria spp.</td>
<td>Sabrina Roberts</td>
</tr>
<tr>
<td>27</td>
<td>P120. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer</td>
<td>Lori Snyder</td>
</tr>
<tr>
<td>28</td>
<td>P121. Genome sequence assembly, annotation, and comparative analysis of a potential novel serogroup of Neisseria meningitidis</td>
<td>Lori Snyder</td>
</tr>
<tr>
<td>29</td>
<td>P122. Epigenetic gene regulation of DNA methyltransferase in Neisseria meningitidis</td>
<td>Adeana Scott</td>
</tr>
<tr>
<td>30</td>
<td>P123. MtrA is a global regulator of genes in N. gonorrhoeae with roles in iron acquisition and glutamine metabolism</td>
<td>Yaramah Zalucki</td>
</tr>
</tbody>
</table>
GONOCOCCAL VACCINES

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>P124. Lipooligosaccharide (LOS) heptose I glycan extensions modulate the bactericidal efficacy of a monoclonal Ab directed against a gonococcal LOS vaccine epitope</td>
<td>Srinjoy Chakraborti</td>
</tr>
<tr>
<td>32</td>
<td>P125. A new approach to gonococcal vaccine development based on local induction of Th1-driven immune responses</td>
<td>Michael Russell</td>
</tr>
<tr>
<td>33</td>
<td>P126. Refinement of immunising antigens to produce antibodies capable of blocking function of the AniA nitrite reductase of Neisseria gonorrhoeae</td>
<td>Lucy Shewell</td>
</tr>
<tr>
<td>34</td>
<td>P127. Antibody to reduction modifiable protein (Rmp) increases the bacterial burden and the duration of gonococcal infection in a mouse model.</td>
<td>Sunita Gulati</td>
</tr>
</tbody>
</table>

HOST DEFENSES AND IMMUNE RESPONSES

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>P128. Pre-existing Chlamydia infection is associated with an increased risk of gonococcal infection</td>
<td>Sunita Gulati</td>
</tr>
<tr>
<td>36</td>
<td>P129. Functional analysis of the anti-factor H binding protein antibody repertoire of adults immunized with 4CMenB vaccine</td>
<td>Peter Beernink</td>
</tr>
<tr>
<td>37</td>
<td>P130. N. gonorrhoeae activates caspase 1 in epithelial cells</td>
<td>Senthil Velan Bhoopalan</td>
</tr>
<tr>
<td>38</td>
<td>P131. Development of an asymptomatic gonorrhea/chlamydia coinfection model</td>
<td>Allison Costenoble-Caherty</td>
</tr>
<tr>
<td>39</td>
<td>P132. Neisseria gonorrhoeae induces a M2 polarization of human macrophages.</td>
<td>Alejandro Escobar</td>
</tr>
<tr>
<td>40</td>
<td>P133. Immunity elicited by Neisseria meningitidis carriage confers broader protection than anticipated by serum antibody cross-reactivity in CEACAM1-humanized mice</td>
<td>Scott Gray-Owen</td>
</tr>
<tr>
<td>41</td>
<td>P134. The role of lipooligosaccharide phosphoethanolamine transferase A, a lipooligosaccharide-modification enzyme, in gonococcal defense against human neutrophils</td>
<td>Jonathan Handing</td>
</tr>
<tr>
<td>42</td>
<td>P135. Neisseria meningitidis activates NLRP3 inflammasome in human neutrophils</td>
<td>Berhane Idosa</td>
</tr>
<tr>
<td>43</td>
<td>P136. Distinct outcomes upon transcervical Neisseria gonorrhoeae infection of the female mouse upper genital tract during different phases of the reproductive cycle</td>
<td>Epshita Islam</td>
</tr>
<tr>
<td>44</td>
<td>P137. Use of GMMA for the generation and characterisation of monoclonal antibodies specific for the Neisserial Adhesin A (NadA)</td>
<td>Emma Ispasanie</td>
</tr>
<tr>
<td>45</td>
<td>P138. Structural analysis of lipooligosaccharides (LOS) of Neisseria meningitidis from patient and carrier strains reveals multiple facets of correlation of structure with pathobiology</td>
<td>Gary Jarvis</td>
</tr>
<tr>
<td>46</td>
<td>P139. Secretion of a nuclease by Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps</td>
<td>Richard Juneau</td>
</tr>
<tr>
<td>47</td>
<td>P140. Phase variable expression of IptA modulates resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides</td>
<td>Justin Kandler</td>
</tr>
<tr>
<td>P141. Molecular basis of the human antibody repertoire to meningococcal factor H binding protein</td>
<td>Alexander Lucas</td>
<td></td>
</tr>
<tr>
<td>P142. Human transferrin increases gonococcal colonization in the lower genital tract of female mice and the neutrophil response to infection</td>
<td>Michelle Pilligua-Lucas</td>
<td></td>
</tr>
<tr>
<td>P143. Two lytic transglycosylases are important for Neisseria gonorrhoeae survival from human neutrophils</td>
<td>Stephanie Ragland</td>
<td></td>
</tr>
<tr>
<td>P144. Neisseria gonorrhoeae modulates immune cell survival through pyroptosis</td>
<td>Jessica Ritter</td>
<td></td>
</tr>
<tr>
<td>P145. Neisseria gonorrhoeae induces changes in MMP-2 and MMP-9 levels upon infection of human Fallopian tube epithelial cells</td>
<td>Paula Rodas</td>
<td></td>
</tr>
<tr>
<td>P146. NADPH oxidase assembly in primary human neutrophils infected with Neisseria gonorrhoeae</td>
<td>Asya Smirnov</td>
<td></td>
</tr>
<tr>
<td>P147. Seroprevalence of antibody-mediated, complement-dependent opsonophagocytic activity to Neisseria meningitidis serogroup B in England</td>
<td>Stephen Taylor</td>
<td></td>
</tr>
<tr>
<td>P148. Lipopolysaccharide engineering in Neisseria meningitidis: structural and functional analysis of novel lipid A variants obtained by expression of heterologous modifying enzymes</td>
<td>Peter van der Ley</td>
<td></td>
</tr>
<tr>
<td>P149. Host cytokine responses to Neisseria gonorrhoeae infection within the female genital tract of humanized mice</td>
<td>Lee Wetzler</td>
<td></td>
</tr>
<tr>
<td>P150. Phosphoethanolamine (PEA) modification on the lipid A moiety of Neisseria gonorrhoeae lipooligosaccharide reduces autophagy formation in macrophages</td>
<td>Susu Zughaier</td>
<td></td>
</tr>
</tbody>
</table>

MOLECULAR AND CELLULAR BIOLOGY

<table>
<thead>
<tr>
<th>Board #</th>
<th>Abstract Number and Title</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>P151. Extended glycan diversity in the O-linked protein glycosylation system linked to allelic polymorphisms and minimal genetic alterations in a glycosyltransferase gene</td>
<td>Bente Børud</td>
</tr>
<tr>
<td>59</td>
<td>P152. Spatial organization of the endothelial receptors for meningococcal type IV pili governs bacterial adhesion and signaling events</td>
<td>Sandrine Bourdoulous</td>
</tr>
<tr>
<td>60</td>
<td>P153. Exhaustive identification by high throughput screening of new meningococcal and host factors required for meningococcal pathogenesis</td>
<td>Elena Capel Malo</td>
</tr>
<tr>
<td>61</td>
<td>P154. Characterization of Neisserial autotransporter lipoprotein (NalP)</td>
<td>Osman Adamu Dufailu</td>
</tr>
<tr>
<td>62</td>
<td>P155. Molecular characterization of two capsule null locus meningococci causing invasive disease in South Africa</td>
<td>Karistha Ganesh</td>
</tr>
<tr>
<td>63</td>
<td>P156. Molecular analysis of the Type IV pilus motor proteins in commensal and pathogenic Neisseria</td>
<td>Alyson Hockenberry</td>
</tr>
<tr>
<td>64</td>
<td>P157. Pilus mediated bacterial aggregation is critical for optimal meningococcal endovascular colonization in vivo.</td>
<td>Olivier Join-Lambert</td>
</tr>
<tr>
<td>65</td>
<td>P158. Adhesion of Neisseria meningitidis to endothelial cells impairs the generation of the potent anticoagulant Activated Protein C through the cleavage of the Endothelial Protein C Receptor</td>
<td>Hervé Lécuyer</td>
</tr>
<tr>
<td>66</td>
<td>P159. TLR2-dependent epithelial cell activation increases cellular up-take of Neisseriae</td>
<td>Deana Toussi</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>67</td>
<td>Typing and loop charges of porB VR of Neisseria meningitidis carriage and invasive isolates</td>
<td>Paola Massari</td>
</tr>
<tr>
<td>68</td>
<td>Investigating the role of type IV pili retraction forces of pathogenic Neisseria gonorrhoeae and commensal Neisseria elongata during their interaction with human host cells.</td>
<td>Emilia Laura Munteanu</td>
</tr>
<tr>
<td>69</td>
<td>Neisseria meningitidis infection causes cell cycle arrest at S phase in continuous and primary human brain endothelial cells.</td>
<td>Alexandra Schubert-Unkmeir</td>
</tr>
<tr>
<td>70</td>
<td>Investigating the role of the non-integrin laminin receptor in the pathogenesis of meningococcal meningitis</td>
<td>Sozan Qarani</td>
</tr>
<tr>
<td>71</td>
<td>Neisseria meningitidis sensing of host cells induces microcolony dispersal</td>
<td>Sara Sigurlasdóttir</td>
</tr>
<tr>
<td>72</td>
<td>Neisseria gonorrhoeae breaches the epithelial barrier by inducing calcium flux and calcium-dependent activation of non-muscle myosin II for tissue invasion</td>
<td>Wenxia Song</td>
</tr>
<tr>
<td>73</td>
<td>Quick molecular techniques to generate mutants in the Neisseria genus.</td>
<td>Ingrid Spielman</td>
</tr>
<tr>
<td>74</td>
<td>The moonlighting functions of meningococcal fructose 1,6-bisphosphate aldolase: adhesion and plasminogen binding</td>
<td>David Turner</td>
</tr>
<tr>
<td>75</td>
<td>Molecular characterization of Neisseria meningitidis isolates collected through Active Bacterial Core surveillance and an enhanced surveillance in the United States, 2010-11</td>
<td>Jeni Vuong</td>
</tr>
<tr>
<td>76</td>
<td>Restriction endonucleases from invasive N. gonorrhoeae cause DNA double-strand breaks and distort mitosis in epithelial cells during infection</td>
<td>Linda Weyler</td>
</tr>
<tr>
<td>77</td>
<td>Fibroblast Growth Factor1 is essential for meningococcal invasion into Human Brain Microvascular Endothelial cells</td>
<td>Karl Wooldridge</td>
</tr>
</tbody>
</table>